Rapid responses to health questions for fact-checkers and journalists.
Tocilizumab and sarilumab are drugs used for arthritis treatment that have shown potential to reduce deaths among severely ill COVID-19 patients. Several clinical trials around the world are underway to study the effect of tocilizumab and sarilumab to treat severe SARS-CoV-2 infection. There have been mixed results about their efficacy to treat COVID-19 based on the studies conducted so far. A recent study of 800 patients conducted in the UK has shown encouraging results. As per the pre-print, which has not been peer-reviewed yet, hospital mortality among critically ill patients with COVID-19, who were on organ support in intensive cares, had better survival rates (28% and 22.2% respectively for early tocilizumab and sarilumab treatments) compared to those who were not treated with these drugs (35.8%). Based on the available research evidence, the U.K. NHS has encouraged the use of tocilizumab and sarilumab to support the treatment of patients with COVID-19 who have been admitted to intensive care units. Tocilizumab and sarilumab are immunosuppressor drugs, that work to suppress a protein called IL-6. When a virus infects a body and starts replicating itself, the immune system response activates, which in the case of severe infections may then lead to an inflammatory response, where the immune system starts attacking the body’s own cells. In case of severe COVID-19 illness, some patients experience a self- damaging cytokine response with very high levels of IL-6. These drugs help to inhibit such a response.
Nasal or nose swab testing for COVID-19 is a completely standard and safe procedure to detect COVID-19. It does not pose any significant risks to the patient, beyond some discomfort. The procedure can trigger tears when performed correctly, because it activates a reflex in your body. The procedure does not last for more than five seconds per nostril, and there are no lasting effects from the test. The nose swab needs to be inserted quite far into the nose in order to get a sample of secretions that can be sent to a lab for analysis. Since most people do not typically experience an object being inserted into the nose on a regular basis, they can experience minor discomfort, but there are no other short or long-term harms that result from the procedure. It is virtually impossible for swab testing to access or have any impact on the blood-brain barrier. The blood-brain barrier is a packed layer of cells that creates a barrier, protecting molecules in the blood from the brain's blood vessels. Rupturing the blood-brain barrier would require breaking through multiple layers of tissue, drilling through bone, and going through blood vessels, which is not possible with a nasal swab. The nasal swab technique is standard practice across the world, and it cannot rupture the blood-brain barrier or the endocrine glands, nor can it infect the brain, as some have falsely claimed.
According to the United States Center for Disease Control and Prevention, antibody tests should not be generally used for diagnosing a COVID-19 infection, because the body can take up to three weeks to produce antibodies in response to a new infection. For this reason, the presence of antibodies is a good measure of protection and is generally not reliable for diagnosis.
Assurance testing, also called 'universal testing,' is a process in which an entire population gets tested for a virus several times over a specific period. So far during the pandemic, testing has mostly been saved for people who are experiencing symptoms, people who were in contact with individuals who tested positive for COVID-19, or people who are at high-risk of infection. Assurance testing would remove those limitations and allow everyone to get tested. Assurance testing tests large regions so that if an outbreak happens, it can be caught early and controlled through isolation measures. This type of testing could help different regions as they begin to reopen economies, schools, and other large gatherings after the lifting of lockdown and shelter in place orders. Assurance testing can help people interact with one another safely without leading to an increase in cases and uncontrollable outbreaks. Social distancing and mask wearing are still recommended in most regions for the near future, but assurance testing could help to maintain lower levels of the virus in populations that have been able to reopen.
Mental state and emotion cannot prevent COVID-19 from spreading. The use of face coverings, physical distancing and hand washing are recommended guidelines by WHO and US CDC health officials to reduce the spread of the SAR-CoV-2 virus. A recent study by researchers at Aarhus University found that people who are empathetic towards those who may be more vulnerable to the infection tend to wear face masks and maintain physical distancing more often. The study demonstrates that evoking empathy may be effective for promoting and encouraging the use of face masks and physical distancing, compared with using factual information alone. The findings do not imply that if one is empathetic or in a particular mental state, they will not spread the virus.
Using an at-home ultraviolet (UV) light is ineffective at treating, curing or preventing COVID-19, and can be highly dangerous. There is one type of UV ray (UVC rays) that can kill the COVID-19 virus, but it is highly dangerous to use UVC ray treatment unless you’re properly trained. It is not intended for use outside of hospital settings, such as in public non-hospital spaces or at home. Exposing yourself or your belongings to at-home non-UVC UV rays through lamps or lights for any period of time does not prevent someone from spreading COVID-19 to another person or catching COVID-19 from another person, and does not disinfect items. Long-term exposure to sunlight or UV radiation can be very damaging and increase your risk of skin cancer. As of now, there is no clear benefit of using any at-home UV products for preventing or treating COVID-19.
During clinical trials for drug or vaccine development, testing is done on recruited participants in settings controlled by investigators, meaning that the studies do not necessarily reflect real-world populations and conditions. There are many factors to consider when evaluating the safety and efficacy of COVID-19 vaccines, such as race and ethnicity, sex and gender, age, and different health conditions. Race and ethnicity are believed to be important to consider when evaluating vaccine candidates. For example, with previous vaccines for influenza, a study found that race-related differences in immune responses to the vaccines were linked to genes being expressed differently in African Americans and Caucasians. It is possible that there could be differences in immune responses to the COVID-19 vaccines, so there is a need for diverse participants in clinical trials. Unfortunately, clinical trials have mostly recruited a limited pool of people for participation, historically as well currently. There have been efforts to diversify the race and ethnicity of participants in COVID-19 vaccine trials, but there remain inequities in who has sufficient information to provide consent as well as who has the time and resources (such as transportation access) to participate. Additionally, there can be a lack of trust for participation due to the history of exploiting racial and ethnic minorities, such as the infamous Tuskagee syphilis that hurt many African Americans in the U.S. Globally, drug development and clinical trials have taken place mostly in countries with more financial resources, historically as well as currently. There have been efforts to address some of these inequities, such as COVID-19 vaccine manufacturers running clinical trials with participants recruited from multiple countries. Unfortunately, there is still limited data about the safety and efficacy for people in certain parts of the world, because fewer participants there have been able to participate in clinical trials. Clinical trial participation must be diversified, in order to understand how different people around the world will be impacted when given the COVID-19 vaccines.
On November 18th, 2020, Pfizer announced that its experimental COVID-19 vaccine (BNT162b2) prevented infection in 95% of overall participants who received the drug company’s late-stage clinical trial dose. In adults over 65 years of age, the vaccine was effective in over 94% of volunteers. These early results exceeded the minimum United States Food and Drug Administration (U.S. FDA) target of 50% efficacy—but it is important to reiterate that no vaccine is ever 100% effective. It is impossible to know how well a vaccine actually works until it is deployed in the real world and given to large populations, not just volunteer participants in a trial. While the current data is promising, it has yet to be evaluated by the U.S. FDA, and more information is needed before Pfizer can pursue approval for the vaccine. The company has concluded its phase III trial but will continue to monitor patients for any adverse reactions or events. Additionally, to ensure that there are not major safety concerns, the U.S. FDA is requiring manufacturers to provide at least two months of follow-up data for at least half of the volunteer participants. Most serious side effects from vaccines occur within about six weeks after the vaccine is given. In vaccine clinical trials, any observed impacts of the vaccine on volunteer participants are eventually considered side effects with more serious side effects causing the trials to pause or stop completely. No safety concerns about these potential side effects have been reported so far. Pfizer recently stated that the only side effects that occurred in more than 2% of participants was fatigue at 3.8% and headache at 2.0%. Because the news about this vaccine is still early, there is still a lot we don't know. Remaining questions include when the vaccine might be available for everyone, if it will work in children younger than 12 (as they have been excluded from the early trials), if it will stop the virus from spreading in people who are infected but don't have any symptoms (asymptomatic), if it will prevent people from developing severe cases, and how long the vaccine might offer protection from the the virus. This vaccine requires an initial injection followed by a secondary shot called a “booster” to achieve its full level of protection. The vaccine was found to be effective against COVID-19 beginning 28 days after the first dose. The clinical trial included more than 43,000 volunteer participants, many of whom already received two doses of the vaccine. In the interim analysis, there were 94 cases of COVID-19 in trial participants, and the study continued until there have been 164 cases of COVID-19 among study volunteers. It is important to note that these study results may not play out the same under “real life” circumstances because of differences in health status, weight, age, and other factors across communities. While Pfizer has reported that 42% of participants are from “diverse backgrounds,” the study population may not reflect the diversity of our global populations and communities despite the vaccine being effective across age, gender, race and ethnicity demographics in the trials.
COVID-19 infections can have an impact on blood and circulation through an increased risk of blood clotting. Blood clots are a clump of blood that has formed into a semi-solid or even gel-like state. Recent studies have found a concerning trend in blood clotting of COVID-19 patients. Studies from the Netherlands and France found that 20-30% of critically ill COVID-19 patients had blood clots, which can be dangerous. Many of these circulatory issues and the frequency of clots can lead to rashes, swelling of the legs, challenges in vascular access for medications, and even death. Severe clotting and circulatory issues, like COVID-19 associated blood clots, tend to occur more in severely ill patients rather than those with mild symptoms.
Wearing a face mask is both safe and recommended to slow the spread of COVID-19. The United States Centers for Disease Control recommends widespread use of cloth face coverings over surgical masks to prevent spread from people who might have the virus that causes COVID-19 without realizing it. While N95 masks are in short supply and should be reserved for healthcare workers, cloth face coverings should always be worn when interacting with other people in close proximity (including but not limited to grocery shopping, ordering food at a restaurant, interacting with people within 6 feet in outdoor spaces). You should clean your hands before touching the mask, make sure the mask covers your nose and mouth, and ensure the mask fits tightly on your face without leaving exposed spaces. Additionally, you should avoid touching the front of the mask, avoid taking the mask off when talking to other people; only remove the mask by touching the straps; wash your hands after removing the mask; wash the mask in soap and detergent with hot water at least once a day; and avoid sharing masks with others or leaving used masks around other people. While mask wearing is recognized as safe and is advised by the World Health Organization and other leading health advisory groups, there are cases where masks should not be used. For instance, masks are not safe for children under 2 years of age, people who have trouble breathing in general, or individuals who are unconscious or who would be unable to remove the mask without help. Several cities and states, such as New Orleans and Washington, have mandated the use of face masks to slow the spread of the virus. However, masks alone are not enough. In addition to wearing a mask to help stop the spread of the virus, public health experts encourage social distancing (staying at least 6 feet (2 meters) away from others) as well as frequent and thorough hand washing.
Vaccines imitate real infections in our bodies, and they can sometimes cause minor symptoms in people. This happens because, in trying to fight off the imitation infection, some bodies develop real symptoms. As of January 25, 2021, almost 55 million doses of the Pfizer and Moderna vaccines have been given to help protect people from a COVID-19 infection. Within this group, medical research has not found the symptoms of shaking, convulsions or tongue spasms as known side effects of the vaccine. The United States Centers for Disease Control and Prevention and the Food and Drug Administration have said that these symptoms have not been documented in any reported vaccine patients and are not in line with the list of side effects noted during clinical trials. Additionally, the United States Vaccine Adverse Event Reporting System has yet to receive any reports from patients that list these side effects after they received their vaccines. However, it is recommended that anyone who has had previous allergic reactions to vaccines to not receive an injection of the COVID-19 vaccine, because in very few cases they can cause allergic reactions. When vaccines are distributed at scale, the way they currently are for COVID-19, some little known side effects may be reported during the rollout. Those side effects may or may not be related to the vaccine itself. Despite national health, medical, drug regulatory agencies and pharmaceutical companies noting that side effects like convulsions and shaking are not listed and have not been reported, it is important for anyone experiencing any severe side effects to report them to their physician and drug regulatory agencies and seek medical care immediately. While vaccine side effects are often minimal, fevers and pain at the injection site sometimes occur after vaccination. Severe side effects are rare and must be quickly reported to the patient's physician and national medication regulatory agencies.
Different institutions (including hospitals, clinics, public health agencies, and government agencies) have used different criteria to define when someone with COVID-19 is considered recovered. These criteria are often used to decide when someone can be allowed to leave the hospital or can stop isolation. A review of COVID-19 recovery guidelines being used around the world show most doctors agree on the following criteria: 1) Clinical: The patient no longer has symptoms, and 2) Laboratory: The patient has negative test results (testing through swabs taken from the nose and throat) showing the virus is no longer present in the upper respiratory system. Both of these criteria should be considered in combination to determine recovery. Negative test results are important because people can still spread the virus even if they have no symptoms or their symptoms have stopped. In addition, the European Centre for Disease Control and Prevention (ECDC) suggests also considering the following criteria to determine if a patient has recovered: 3) Positive serological or antibody test results from blood samples. Antibody tests can show if your immune system has produced antibodies to fight off COVID-19 which would signal that you had been infected with the virus. Antibody tests are typically done at least 1-3 weeks after a patient first experiences symptoms. However, antibody test results should not be used on their own to determine recovery - they should be used in combination with the other two criteria. It is not always possible to use these recommended criteria to determine recovery. For example, some people with COVID-19 experience only mild symptoms (fatigue, shortness of breath, etc.) yet are not hospitalized because these symptoms are not severe enough. These mild symptoms can however persist over long periods of time (weeks to months) which further complicates how to decide if someone has recovered or not from COVID-19.
A human challenge trial (HCT) is a study that deliberately infects volunteers with a virus after they've been given a vaccine, in order to see if the vaccine is effective. Clinical trials usually allow participants to be exposed to COVID-19 in their day-to-day lives, but HCTs intentionally infect volunteers in order to learn about the virus, immune responses, medications, and treatments.
Public health experts indicate that lockdown measures in India ended too quickly, just as cases started spiking. The initial lockdown was in effect for 21 days from March 24, 2020, and was extended to May 31, 2020. Following May 31, 2020, the country opened up in phases, and only a few areas continued to place restrictions on movement. Crowded means of transportation, densely packed neighborhoods, and inadequate social distancing have contributed to a steep rise in infections, made worse by a premature end to the lockdown. The end of the lockdown has also sparked a mass exodus of migrant laborers back to their home states, which local health authorities worry has driven the rise in new cases. It's too soon to tell whether the spike in new cases has actually been driven by migrant laborers—increased testing availability has allowed for more cases to be detected, which may also contribute to the increased case count. Experts from the Indian Council of Medical Research noted that India has still not reached the peak of infections, and that cases are likely to continue to rise in the future.
Thymosin alpha-1 has not been shown to be safe or effective in preventing, treating, or curing COVID-19. The drug has been sold under the brand name Zadaxin, and was created to act as a lab-made version of a natural substance in the body that can stimulate some immune functions and responses in humans. However, despite many inaccurate claims by several wellness groups, thymosin alpha-1 has never been approved by the U.S. Food and Drug Administration (FDA) for COVID-19, or any other condition. It has been granted "orphan drug designation" in order to research the drug as a potential treatment for some rare illnesses (though has yet to be approved for any). Thymosin alpha-1 has been approved in 30 countries outside the United States for treatment of chronic viral infections, including HIV and chronic hepatitis C, and it has some promising research occurring in other types of disease responses, but has not been designated as a COVID-19 treatment by the World Health Organization. Though there are currently some studies being conducted that research the impact of thymosin alpha-1 on COVID-19 patients, including clinical trials, there is not enough evidence to support using this drug as a treatment or prevention tool for the virus.
Health Desk provides on-demand and on-deadline science information to users seeking to quickly communicate complex topics to audiences.
In-house scientists provide custom explainers for critical science questions from journalists, fact-checkers and others in need of accessible breakdowns on scientific information. Topics range from reproductive health, infectious disease, climate science, vaccinology or other health areas.
Meedan's Health-Desk.org makes every effort to provide health- and science-related information that is accurate and reflects the best evidence available at the time of publication. To submit an error or correction request, please email our editorial team at health@meedan.com. All error or correction requests will be reviewed by the Health Desk Editorial and Science Teams. Where there is evidence of a factual error or typo, we will update the explainer with a correction or clarification and follow up with the reader on the status of the request.
Our scientists, writers, journalists, and experts do not engage in, advocate for, or publicize their personal views on policy issues that might lead a reasonable member of the public to see our team’s work as biased. If you have concerns or comments about potential bias in our work, please contact our editorial team at health@meedan.com.
Health Desk provides on-demand and on-deadline science information to users seeking to quickly communicate complex topics to audiences.
In-house scientists provide custom explainers for critical science questions from journalists, fact-checkers and others in need of accessible breakdowns on scientific information. Topics range from reproductive health, infectious disease, climate science, vaccinology or other health areas.
Meedan's Health-Desk.org makes every effort to provide health- and science-related information that is accurate and reflects the best evidence available at the time of publication. To submit an error or correction request, please email our editorial team at health@meedan.com. All error or correction requests will be reviewed by the Health Desk Editorial and Science Teams. Where there is evidence of a factual error or typo, we will update the explainer with a correction or clarification and follow up with the reader on the status of the request.
Our scientists, writers, journalists, and experts do not engage in, advocate for, or publicize their personal views on policy issues that might lead a reasonable member of the public to see our team’s work as biased. If you have concerns or comments about potential bias in our work, please contact our editorial team at health@meedan.com.
Nat Gyenes, MPH, leads Meedan’s Digital Health Lab, an initiative dedicated to addressing health information equity challenges, with a focus on the role that technology plays in mediating access to health through access to information. She received her masters in public health from the Harvard T. H. Chan School of Public Health, with a focus on equitable access to health information and human rights. As a research affiliate at Harvard’s Berkman Klein Center for Internet & Society, she studies the ways in which health information sources and outputs can impact health outcomes. She lectures at the Harvard T.H. Chan School of Public Health on Health, Media and Human Rights. Before joining Meedan, Nat worked at the MIT Media Lab as a health misinformation researcher.
Megan Marrelli is a Peabody award-winning journalist and the News Lead of Health Desk. She focuses on news innovation in today’s complex information environment. Megan has worked on the digital breaking news desk of the Globe and Mail, Canada’s national newspaper, and on the news production team of the Netflix series Patriot Act with Hasan Minhaj. She was a Canadian Association of Journalists finalist for a team Chronicle Herald investigation into house fires in Halifax, Nova Scotia. On top of her role at Meedan Megan works with the investigative journalism incubator Type Investigations, where she is reporting a data-driven story on fatal patient safety failures in U.S. hospitals. She holds a Master of Science from the Columbia Journalism School and lives in New York.
Anshu holds a Doctor of Public Health (DrPH) from the Harvard T.H. Chan School of Public Health, and a Humanitarian Studies, Ethics, and Human Rights concentrator at the Harvard Humanitarian Initiative. She is a Harvard Voices in Leadership writing fellow and student moderator, Prajna Fellow, and the John C. and Katherine Vogelheim Hansen Fund for Africa Awardee. Anshu’s interests include: systemic issues of emergency management, crisis leadership, intersectoral approaches to climate risk resilience, inclusion and human rights, international development, access and sustainability of global health systems, and socio-economic equity. Anshu has worked at the United Nations, UNDP, UNICEF, Gates Foundation, and the Institute of Healthcare Improvement.
Dr. Christin Gilmer is a Global Health Scientist with a background in infectious diseases, international health systems, and population health and technology. In the last 15 years, Christin has worked for the WHO, University of Oxford, World Health Partners, USAID, UNFPA, the FXB Center for Health & Human Rights and more, including volunteering for Special Olympics International’s health programs and running health- and technology-based nonprofits across the country. She obtained her Doctor of Public Health Degree at the Harvard T.H. Chan School of Public Health, her MPH at Columbia, and spent time studying at M.I.T., Harvard Kennedy School, and Harvard Business School. Christin has worked in dozens of countries across five continents and loves running programs and research internationally, but she is currently based in Seattle.
Dr. Jessica Huang is currently a COVID-19 Response and Recovery Fellow with the Harvard Kennedy School’s Bloomberg City Leadership Initiative. Previously, she worked and taught with D-Lab at MIT, leading poverty reduction and humanitarian innovation projects with UNICEF, UNHCR, Oxfam, USAID, foreign government ministries and community-based organizations across dozens of countries. She also co-founded a social enterprise that has provided access to safe drinking water to thousands in India, Nepal and Bangladesh. Formerly trained as an environmental engineer, she earned a Doctorate of Public Health from Harvard and a Master’s in Learning, Design and Technology (LDT) from Stanford. Her projects have won multiple awards, including the top prize in A Grand Challenge for Development: Technology to Support Education in Crisis & Conflict Settings, and led to her being recognized for Learning 30 Under 30. She enjoys being an active volunteer, supporting several non-profits in health, education, environmental sustainability and social justice.
Jenna Sherman, MPH, is a Program Manager for Meedan’s Digital Health Lab, an initiative focused on addressing the urgent challenges around health information equity. She has her MPH from the Harvard T.H. Chan School of Public Health in Social and Behavioral Sciences, with a concentration in Maternal and Child Health. Prior to her graduate studies, Jenna served as a Senior Project Coordinator at the Berkman Klein Center for Internet and Society at Harvard Law School, where she worked on tech ethics with an emphasis on mitigating bias and discrimination in AI and health misinformation online. Previous experiences include helping to develop accessible drug pricing policies, researching access to quality information during epidemics, and studying the impact of maternal incarceration on infant health.
Nour is a Global Health Strategy consultant based in Dakar (Senegal) and specialized in health system strengthening. Most recently, she worked with Dalberg Advisors focusing on Epidemic Preparedness & Response and Vaccination Coverage and Equity across 15 countries in Sub-Saharan Africa. Her previous work experiences include researching the clinical needs in point-of-care technology in cancer care at the Dana-Farber Cancer Institute in Boston; and coordinating the implementation of a colonoscopy quality assurance initiative for a colorectal cancer screening program at McGill University in Montreal. Nour has a Master of Public Health from the Harvard T.H. Chan School of Public Health, a Master of Arts in Medical Ethics and Law from King’s College London, and a Bachelor of Science from McGill University. She is fluent in French and English.
Shalini Joshi is a Program Lead at Meedan and formerly the Executive Editor and co-founder of Khabar Lahariya - India’s only independent, digital news network available to viewers in remote rural areas and small towns. Shalini transformed Khabar Lahariya from one edition of a printed newspaper to an award-winning digital news agency available to over ten million viewers. She has a sophisticated understanding of local media and gender, and the ways in which they can inhibit women from participating in the public sphere in South Asia. Shalini was a TruthBuzz Partner & Fellow with the International Center for Journalists (ICFJ). She is a trainer in journalism, verification and fact-checking. She has designed, implemented and strengthened news reporting & editorial policies and practices in newsrooms and fact-checking organisations. Shalini set up and managed the tipline used to collect WhatsApp-based rumors for Checkpoint, a research project to study misinformation at scale during the 2019 Indian general elections.
Mohit Nair currently serves as Partnerships Director at FairVote Washington, a non-profit organisation based in Seattle, WA. Previously, he worked with the Medecins Sans Frontieres (MSF) Vienna Evaluation Unit and with MSF Operational Centre Barcelona in India. He has conducted research studies on diverse topics, including the drivers of antibiotic resistance in West Bengal and perceptions of palliative care in Bihar. Mohit has also worked as a research consultant with Save the Children in Laos to identify gaps in the primary health system and develop a district-wide action plan for children with disabilities. He holds a Master of Public Health from the Harvard University T.H. Chan School of Public Health and a Bachelor of Science from Cornell University.
Seema Yasmin is an Emmy Award-winning medical journalist, poet, physican and author. Yasmin served as an officer in the Epidemic Intelligence Service at the U.S. Centers for Disease Control and Prevention where she investigated disease outbreaks. She trained in journalism at the University of Toronto and in medicine at the University of Cambridge. Yasmin was a finalist for the Pulitzer Prize in breaking news in 2017 with a team from The Dallas Morning News and received an Emmy Award for her reporting on neglected diseases. She received two grants from the Pulitzer Center on Crisis Reporting and was selected as a John S. Knight Fellow in Journalism at Stanford University iin 2017 where she investigated the spread of health misinformation and disinformation during epidemics.
Dr. Saskia Popescu is an infectious disease epidemiologist and infection preventionist with a focus on hospital biopreparedness and the role of infection prevention in health security efforts. She is an expert in healthcare biopreparedness and is nationally recognized for her work in infection prevention and enhancing hospital response to infectious diseases events. Currently, Dr. Popescu is an Adjunct Professor with the University of Arizona, and an Affiliate Faculty with George Mason University, while serving on the Coronavirus Task Force within the Federation of American Scientists, and on a data collection subcommittee for SARS-CoV-2 response with the National Academies of Science, Engineering, and Medicine. She holds a PhD in Biodefense from George Mason University, a Masters in Public Health with a focus on infectious diseases, and a Masters of Arts in International Security Studies, from the University of Arizona. Dr. Popescu is an Alumni Fellow of the Emerging Leaders in Biosecurity Initiative (ELBI) at the Johns Hopkins Bloomberg School of Public Health, Center for Health Security. She is also an external expert for the European Centre for Disease Control (ECDC), and a recipient of the Presidential Scholarship at George Mason University. In 2010, she was a recipient of the Frontier Interdisciplinary eXperience (FIX) HS-STEM Career Development Grant in Food Defense through the National Center for Food Protection and Defense. During her work as an infection preventionist, she managed Ebola response, a 300+ measles exposure resulting in an MMWR article, and bioterrorism preparedness in the hospital system. More recently, she created and disseminated a gap analysis for a 6-hospital system to establish vulnerabilities for high-consequence diseases, helping to guide the creation of a high-consequence disease initiative to enhance readiness at the healthcare level.
Ben Kertman is a behavior change scientist and public health specialist who became a user research consultant to help organizations design experiences that change behaviors and improve human well-being. Impatient with the tendency of behavior change companies to use a single discipline approach (e.g. behavioral economics) and guard their methods behind paywalls, Ben spent the last 7 years developing an open-source, multi-discipline, behavior change framework for researchers and designers to apply to UX. Ben is an in-house SME at Fidelity Investments and consults for non-profits on the side. Ben holds a masters in Social and Behavior Science and Public Health from Harvard.
Emily LaRose is a Registered Dietitian and Nutrition and Global Health Consultant who, in addition to her work with Meedan, currently works as a Technical Advisor for Nutrition for Operation Smile. She has been a dietitian for more than 18 years and, over the past 10 years, she has worked for the World Bank, Global Alliance for Improved Nutrition (GAIN), Médecins Sans Frontières (MSF), PATH, Johnson & Wales University, and Children’s Hospital Los Angeles. In her work, she has conducted analytical research and written specialty reports on infant and young child malnutrition, health misinformation, global human milk banking practices, and innovative food system programs; developed tools and protocols for clinical nutrition care delivery in humanitarian hospitals; taught university-level nutrition courses; and provided nutritional care for critically ill hospitalized patients. Emily earned her Doctor of Public Health (DrPH) degree with a Nutrition and Global Health Concentration at the Harvard T.H. Chan School of Public Health, her Master of Science in Dietetics at Kansas State University, and her Bachelor of Science in Culinary Arts Nutrition at Johnson & Wales University.
Bhargav Krishna is a Fellow at the Centre for Policy Research in Delhi, and adjunct faculty at the Public Health Foundation of India and Azim Premji University. He previously managed the Centre for Environmental Health at the Public Health Foundation of India, leading research and teaching on environmental health at the Foundation. He has been a member of Government of India expert committees on air pollution and biomedical waste, and has led work with Union and State governments on air pollution, climate change, and health systems. His work has been funded by the World Health Organization, Rockefeller Foundation, Packard Foundation, Environmental Defense Fund, and others. He holds bachelors and masters degrees in Biotechnology and Environmental Science respectively, and graduated recently from the Doctor of Public Health program at the Harvard T. H. Chan School of Public Health. Bhargav also co-founded Care for Air, a non-profit working on raising awareness related to air pollution with school children in Delhi.
Dr. Christine Mutaganzwa is a medical doctor pursuing a Ph.D. program at the Université de Montréal in Biomedical Sciences. She holds a Master of Medical Sciences in Global Health Delivery (MMSc-GHD) from Harvard Medical School, Boston, MA, and a Master of Sciences (MSc) in Epidemiology and Biostatistics from the University of Witwatersrand, Johannesburg, South Africa. She graduated from the University of Rwanda with a degree in General Medicine and Surgery. Christine has worked with referral hospitals in Kigali, the capital city of Rwanda, during her medical training and after graduation. In addition, she has extensive experience working with rural communities in the Eastern province of Rwanda, where she organized clinical and research activities in active collaboration with colleagues within and outside Rwanda. Her research portfolio cuts across maternal and child health to infectious and chronic diseases. Christine is an advocate for children's healthcare services, especially for underserved populations. She is part of a community of scientists translating scientific findings into understandable and accessible information for the general population. Christine is an avid reader and a lover of classical/contemporary music.
Ahmad is an experienced physician, who earned his medical degree from Cairo University, Faculty of Medicine, in Egypt. He practiced medicine between 2012 and 2017 as a general practitioner where he was involved in primary care, health quarantine services, and radiology. He then taught medicine in Cairo for two years prior to starting his MPH program, at the Harvard T.H. Chan School of Public Health, where he supplemented his experience with knowledge on epidemiology, health systems and global health issues. Additionally, Ahmad has an interest in nutrition, which started as a personal curiosity to how he can improve his own health, then quickly saw the potential for public health nutrition in the prevention and management of multiple, lifelong diseases. His enrollment at Harvard started his transition towards learning about food, and public health nutrition. Ahmad now combines the knowledge and experience of his medical career, with the learnings of his degree to navigate public health topics in his writing and his career. He is a life-long learner and continues to gather knowledge and experience, and works towards maximizing his impact through combatting misinformation through his work with Meedan.
Dr. Uzma Alam is a global health professional working at the intersection of infectious diseases and healthcare delivery in the international development and humanitarian contexts. She focuses on the use of evidence and innovation to inform strategies and policies. Her work has appeared globally across print and media outlets.She has international experience with roles of increasing responsibility across the science value chain having served with academic, non-profit, corporate, and governmental agencies, including advisory commissions and corporate counsel. Uzma is the former secretary of the Association of Women in Science and editor of the Yale Journal of Health Policy, Law, and Ethics. Currently she serves on the Board of the Geneva Foundation. She also leads the Biomedical and Health Sciences Portfolio of the Developing Excellence, Leadership and Training in Science in Africa program (DELTAS-Africa). A US$100 million programme supporting development of world-class scientific leaders on the continent. Plus heading the African Science, Technology, and Innovation (STI) Priorities Programme. A programme that engages Africa’s science and political leaders to identify the top STI priorities for the continent that if addressed, offer the highest return on investment for Africa’s sustainable development.