Rapid responses to health questions for fact-checkers and journalists.
Yes, but mostly to other animals of the same species. Currently, there is no evidence that animals are a major cause of spreading COVID-19 and the risk of animals passing COVID-19 to humans is low. According to a recently published study in the New England Journal of Medicine, transmission of the virus has been reported between cats, none of which had symptoms. The study found that three domestic cats infected with the SARS-CoV-2 virus that causes COVID-19 were able to transmit the virus to three other cats with no previous infection. None of the cats in the experiment showed any symptoms during the course of infection, but researchers found the continued spreading the virus from their noses for about six days. However, the research is rapidly evolving. This is just the first study to document asymptomatic transmission of COVID-19 in cats and as of now, there is no evidence of transmission of COVID-19 from cats to humans. Cats aren't the only animals that have been shown to spread the virus with no symptoms. Based on recent research conducted by the Dutch government, it is believed that minks infected with COVID-19 spread the virus to two human employees at regional farms. The minks were having symptoms of a respiratory illness, while another study about COVID-19 in animals has shown that mink can be infected with the virus without having any symptoms. Dogs, tigers, lions, and ferrets have also tested positive for COVID-19, but these animals all showed symptoms after testing positive for the virus and likely acquired the virus from humans.
COVID-19 mRNA vaccines help our bodies create spike proteins, which generate an immune response to fight the COVID-19. There is no evidence that mRNA vaccines create other proteins, and there is no evidence that mRNA vaccines cause autoimmune diseases.
VIPIT and CSVT are acronyms for rare blood clotting reactions that have occurred in people who have received AstraZeneca or Johnson & Johnson's COVID-19 vaccines. It is uncertain whether or not the vaccines caused these clotting issues, but researchers are currently working to determine whether or not there is a link.
There is no evidence to suggest that cloth masks can cause suffocation though they may raise your body temperature.
The Moderna COVID-19 vaccine is an mRNA vaccine with an efficacy rate of 94.1% in clinical trials. After completing several clinical trials, this vaccine has been approved for emergency use authorization in dozens of countries around the world.
A pulse oximeter is a small device that attaches to a finger or ear lobe to measure the amount of oxygen in the blood. The machine painlessly sends light through the skin to measure how much light reflects off of red blood cells. More reflection of light means more oxygen saturation, less reflection of light means less oxygen saturation. Some digital pulse oximeters are very accurate, but others are not. Prescription oximeters that undergo testing by regulatory agencies are recommended. Devices that can be purchased over-the-counter in a pharmacy, store, or online are not recommended. Nail polish (or artificial nails), dirt, poor circulation, some medicines, skin thickness and temperature, tobacco use, and dark-colored skin can make pulse oximeter readings less accurate.
Wildfires and natural disasters may impact COVID-19 transmission by increasing the spread of the virus among people exposed to wildfires, smoke, and other disasters. The U.S. Centers for Disease Control and Prevention (U.S. CDC) noted that "Wildfire smoke can irritate your lungs, cause inflammation, affect your immune system, and make you more prone to lung infections, including SARS-CoV-2, the virus that cause COVID-19." The more people cough and struggle to breathe this way, the more likely they are to spread viral particles in the process. This can spread those particles in the air and around the area so more people are likely to be exposed to the virus in addition to the wildfire smoke. People most at risk from wildfire smoke overlap with some of those most at risk for COVID-19 including adults age 65 and older, pregnant people, people with chronic health conditions, and people with limited access to medical care. For these reasons, the U.S. CDC has outlined steps for preventing further spread of the virus through several safety and prevention tips. Some of these tups include reducing wildfire smoke exposure by seeking cleaner air shelters and air spaces (while still maintaining social distancing and wearing masks) and creating a cleaner air space at home by taking actions like using a portable air cleaners with doors and windows closed, using do-it-yourself box fan filtration units, use air conditions, heat pumps, fans, and windows shades, work with an HVAC professional for help with different filters and settings, and avoid activities that create more indoor and outdoor air pollution like frying foods, sweeping, vacuuming, and using gas-powered appliances. In addition to limiting outdoor exposure when it is smoky outside and chooser lower intensity activities to reduce smoke exposure, the U.S. CDC recommends cloth face coverings or more intense respirators, and getting prepared for the wildfire smoke season by planning evacuation routes and stocking up on medicine. Finally, the U.S. CDC suggests monitoring and planning for the weather including paying attention to the air quality index and knowing the difference between COVID-19 and wildfire smoke exposure symptoms.
Yes. Wearing a face mask helps prevent the spread of COVID-19 in two ways: It protects the person wearing a mask from being exposed to the virus and protects the people around them from being exposed to the virus. The World Health Organization recommends wearing a face mask as part of a comprehensive strategy to prevent the spread of the virus.
As of March 30, 2021, there is not enough evidence to suggest COVID-19 vaccines can cause thrombosis but research is still ongoing. Most national drug agencies have noted the benefit of vaccines is greater than the risks they may pose.
Life expectancy is the estimated number of years that a person can expect to live based on their current age in a specific place. Life expectancy is often measured in two ways. The first way is called Period Life Expectancy and it is calculated by measuring how frequently people died in a specific group in a specific time and then multiplied to represent an entire population. The second way life expectancy can be measured is through using a Cohort Life Expectancy approach and this is measured by calculating mortality risks throughout the lifetimes of a group of individuals born during the same period of time. Because of advances in medical treatment, before 2020, period life expectancy was increasing in many parts of the world. As a result of deaths that have happened during the COVID-19 pandemic, many experts have said that period life expectancy values will decrease, at least temporarily. While period life expectancy is commonly used to report on population health, it is a projection that cannot account for any future changes in mortality (or death), unlike cohort life expectancy. The period life expectancy measure assumes that the number of people in any age group who die in one year will be the same the following year and so on. For example, many people died from COVID-19 in 2020, but with vaccines and other improved methods of prevention and treatment, the number of deaths may be less in 2021. If this is true, the period life expectancy would likely increase again. On February 25, 2020, the U.S. CDC reported that the period life expectancy in the United States fell by a full year in the first six months of 2020 -- from 78.8 years in 2019 to 77.8 years. This period life expectancy reflects the average life expectancy for an infant born in 2020. The value does not mean that everyone who is alive now will die one year earlier. Changes in period life expectancy were reported between males and females. In 2019, female period life expectancy was 5.1 years higher than for males (76.3). In 2020, female period life expectancy was 5.4 years higher than for males (75.1 years for males and 80.5 years for females). Differences in life expectancy were also reported based on race and ethnicity. Life expectancy decreased most for Black individuals, then Latino individuals, then white individuals. As a result of these differences in decreases, the Latino population had a lower period life expectancy advantage compared to the white population by about a year as of the first half of 2020. The white period life expectancy advantage compared to the black population increased by nearly two years to a 6 year difference overall. This is the widest period life expectancy has been between Black individuals and white individuals in the population since 1998. The CDC life expectancy estimates were specifically based on information for the first half of 2020. When remeasured in 2021, life expectancy as well as cohort life expectancy are likely to decrease alongside decreases in COVID-19 deaths and increases in COVID-19 vaccinations.
Long-haul COVID is the continued experience of symptoms caused by COVID-19 for several weeks or months after the initial infection began. Some of the reported persistent symptoms include fatigue, headaches, shortness of breath, anxiety, and depression, palpitations, chest pains, joint or muscle pain and weakness, loss of smell, cough, low fever, headache, and cognitive dysfunction (brain fog, not being able to think straight or focus). More serious complications, although less common, include damage to the heart, lungs, kidney, and gut due to blood clots or weakened blood vessels.
The AstraZeneca vaccine went through rigorous Phase 3 testing and regulatory approval processes before being administered in the general public where it has been approved. In the reported Phase 3 trial data of more than 23,000 people, a total of 175 severe adverse events were reported (84 in the study group, 91 in the control group). Three events were considered possibly related to either the control or experimental vaccine. These events included one case of hemolytic anemia (in the phase 1/2 study control group), one case of transverse myelitis (in the study group 14 days after the second vaccine dose), and a case of high fever without another diagnosis (the patient information remains masked as part of the trial). Blood clots were not mentioned in the study published online on December 8, 2020. In clinical trials, it can be very difficult to identify uncommon side effects or serious adverse events (or reactions). When an event is uncommon, it can take a very large study group for it to be observed in research even once. Vaccine studies are designed to evaluate if the vaccine works, and if it is safe. COVID-19 vaccines were studied in clinical trials with thousands of participants before emergency use approval. Even with diverse and large study groups, it is possible that some side effects, reactions, or serious adverse events may not have been seen in the study population. Events that only occur in a few people out of a million or more can be very difficult to detect. In statistics there is a formula that is sometimes used to estimate how many people would need to be studied to detect a serious adverse reaction (SAR). The formula is called the rule of three. For example, if a medication were to cause a SAR in 1 person in every 1,000, then a company would need to study 3,000 people (the rule of 3) in order to have a 95% chance of observing or detecting even one case. For even more rare events that may occur in 1 person in every 10,000, a company would need to study 30,000 people to have a 95% chance of observing or detecting one case. For comparison, the type of rare blood clotting that was observed is estimated to occur in only a few people out of every million. To help understand more rare adverse effects, drugs and vaccines are studied even after they are approved for the public. Data collection continues for years. This Phase 4 study (or observation) continues as the sample size of the study population is much larger, currently in the many millions for the COVID-19 vaccines. Researchers are continuing to gather data and information about events that occur in people who have received the vaccine. In Epidemiology: An Introduction, a text by Kenneth Rothman, the author notes that a lot of the data around drug safety “comes from studies that are conducted after a drug is marketed.” For the COVID-19 vaccines, government agencies (like the U.S. Food and Drug Administration and others) are collecting data about possible adverse events. Suspected adverse events are reported to the agency, and the agency investigates further. A reported or possible association does not mean that a vaccine caused an event to happen. Trained researchers monitor and analyze data from these reports. They try to evaluate whether it is likely that the reaction was caused by the vaccine. To do so, they study the possible pathways that could cause the reaction to occur. They also compare the probability of the reaction in those who have been vaccinated to the probability of the reaction in those who have not. Now that many millions of people are being vaccinated with the new COVID-19 vaccines, it is not surprising that some rare events, like allergic reactions and blood clots, are being reported. Researchers now need to work to determine if the events are related to the vaccines and why. Many thousands of blood clots are diagnosed every year. Immobility, surgery, obesity, and smoking are some of the many risk factors. According to the European Medicines Agency, it is possible that blood clots could also be related to receiving the AstraZeneca COVID-19 vaccine. There has not been evidence of issues related to specific batches or a particular manufacturing site for the AstraZeneca vaccine. As of April 4, 2021, a total of 222 cases of thrombosis (169 cases of cerebral venous sinus thrombosis and 53 cases of splanchnic vein thrombosis have been reported) have been reported to EudraVigilance - the European system for managing information about serious adverse reactions to medicines. About 34 million people had been vaccinated in the European Economic Area and United Kingdom by this date. On April 7, 2021, the European Medicines Agency safety committee concluded “that unusual blood clots with low blood platelets should be listed as very rare side effects of Vaxzevria (formerly COVID-19 Vaccine AstraZeneca).” The U.K. regulatory agency recommended alternatives to the AstraZeneca vaccine to be given to people under 30 years of age, following 79 reported cases of blood clotting and 19 deaths. As of April 16, 2021, the Australian regulatory agency is also conducting a review of the AstraZeneca vaccine following three reported instances of rare clotting, including one fatal case. AstraZeneca has not applied for regulatory approval in the United States, but another viral vector vaccine for COVID-19 made by Johnson & Johnson is also under review for rare blood clotting as of April 13, 2021. Regulatory agencies take vaccine safety seriously and often exercise an abundance of caution. COVID-19 vaccines have been credited with saving lives and reducing hospitalizations on a large scale.
A “vaccine passport” is a proof that someone has been vaccinated against COVID-19. Currently, vaccine passports are being debated in the public health community for their many pros and cons. Vaccine passports are also being used, or planned to be used, in different ways across and within countries globally, which is a trend that is likely to continue.
There is no evidence to suggest that mRNA COVID-19 vaccines or non-mRNA COVID-19 vaccines would result in death, neuro-cognitive issues, debilitating/long-term inflammation, or infertility.
There is no reliable evidence so far to suggest that cannabis can prevent, treat or cure COVID-19. One pre-print (a type of study that is yet to be peer-reviewed) from Canada suggests possible anti-inflammatory properties in cannabis may be effective in future treatments of the disease. The study also suggests that cannabis could be used to prevent infection from the SARS-CoV-2 virus that causes COVID-19. SARS-CoV-2 gains entry into cells in the human body by interacting with the ACE2 receptor protein, which is found on the surface of many cells. This study suggests that cannabidiol (CBD), one of the active ingredients in cannabis, may affect the virus' ability to bind to the ACE2 receptor protein and enter cells. However, none of the claims in the pre-print study have been validated in large-scale studies, and pre-print data should always be treated with caution. Another lab, in Israel, is studying the effects of cannabis on the immune system's response to COVID-19 and analyzing the potential for molecules in cannabis to prevent the virus from entering cells and spreading. This research, however, has been undertaken by a cannabis research and development company based in Israel, and not independently verified by other scientific studies that are not linked to the cannabis industry. At this point, there is insufficient independent research to make any claims about the use of cannabis in preventing, treating, or curing COVID-19.
Health Desk provides on-demand and on-deadline science information to users seeking to quickly communicate complex topics to audiences.
In-house scientists provide custom explainers for critical science questions from journalists, fact-checkers and others in need of accessible breakdowns on scientific information. Topics range from reproductive health, infectious disease, climate science, vaccinology or other health areas.
Meedan's Health-Desk.org makes every effort to provide health- and science-related information that is accurate and reflects the best evidence available at the time of publication. To submit an error or correction request, please email our editorial team at health@meedan.com. All error or correction requests will be reviewed by the Health Desk Editorial and Science Teams. Where there is evidence of a factual error or typo, we will update the explainer with a correction or clarification and follow up with the reader on the status of the request.
Our scientists, writers, journalists, and experts do not engage in, advocate for, or publicize their personal views on policy issues that might lead a reasonable member of the public to see our team’s work as biased. If you have concerns or comments about potential bias in our work, please contact our editorial team at health@meedan.com.
Health Desk provides on-demand and on-deadline science information to users seeking to quickly communicate complex topics to audiences.
In-house scientists provide custom explainers for critical science questions from journalists, fact-checkers and others in need of accessible breakdowns on scientific information. Topics range from reproductive health, infectious disease, climate science, vaccinology or other health areas.
Meedan's Health-Desk.org makes every effort to provide health- and science-related information that is accurate and reflects the best evidence available at the time of publication. To submit an error or correction request, please email our editorial team at health@meedan.com. All error or correction requests will be reviewed by the Health Desk Editorial and Science Teams. Where there is evidence of a factual error or typo, we will update the explainer with a correction or clarification and follow up with the reader on the status of the request.
Our scientists, writers, journalists, and experts do not engage in, advocate for, or publicize their personal views on policy issues that might lead a reasonable member of the public to see our team’s work as biased. If you have concerns or comments about potential bias in our work, please contact our editorial team at health@meedan.com.
Nat Gyenes, MPH, leads Meedan’s Digital Health Lab, an initiative dedicated to addressing health information equity challenges, with a focus on the role that technology plays in mediating access to health through access to information. She received her masters in public health from the Harvard T. H. Chan School of Public Health, with a focus on equitable access to health information and human rights. As a research affiliate at Harvard’s Berkman Klein Center for Internet & Society, she studies the ways in which health information sources and outputs can impact health outcomes. She lectures at the Harvard T.H. Chan School of Public Health on Health, Media and Human Rights. Before joining Meedan, Nat worked at the MIT Media Lab as a health misinformation researcher.
Megan Marrelli is a Peabody award-winning journalist and the News Lead of Health Desk. She focuses on news innovation in today’s complex information environment. Megan has worked on the digital breaking news desk of the Globe and Mail, Canada’s national newspaper, and on the news production team of the Netflix series Patriot Act with Hasan Minhaj. She was a Canadian Association of Journalists finalist for a team Chronicle Herald investigation into house fires in Halifax, Nova Scotia. On top of her role at Meedan Megan works with the investigative journalism incubator Type Investigations, where she is reporting a data-driven story on fatal patient safety failures in U.S. hospitals. She holds a Master of Science from the Columbia Journalism School and lives in New York.
Anshu holds a Doctor of Public Health (DrPH) from the Harvard T.H. Chan School of Public Health, and a Humanitarian Studies, Ethics, and Human Rights concentrator at the Harvard Humanitarian Initiative. She is a Harvard Voices in Leadership writing fellow and student moderator, Prajna Fellow, and the John C. and Katherine Vogelheim Hansen Fund for Africa Awardee. Anshu’s interests include: systemic issues of emergency management, crisis leadership, intersectoral approaches to climate risk resilience, inclusion and human rights, international development, access and sustainability of global health systems, and socio-economic equity. Anshu has worked at the United Nations, UNDP, UNICEF, Gates Foundation, and the Institute of Healthcare Improvement.
Dr. Christin Gilmer is a Global Health Scientist with a background in infectious diseases, international health systems, and population health and technology. In the last 15 years, Christin has worked for the WHO, University of Oxford, World Health Partners, USAID, UNFPA, the FXB Center for Health & Human Rights and more, including volunteering for Special Olympics International’s health programs and running health- and technology-based nonprofits across the country. She obtained her Doctor of Public Health Degree at the Harvard T.H. Chan School of Public Health, her MPH at Columbia, and spent time studying at M.I.T., Harvard Kennedy School, and Harvard Business School. Christin has worked in dozens of countries across five continents and loves running programs and research internationally, but she is currently based in Seattle.
Dr. Jessica Huang is currently a COVID-19 Response and Recovery Fellow with the Harvard Kennedy School’s Bloomberg City Leadership Initiative. Previously, she worked and taught with D-Lab at MIT, leading poverty reduction and humanitarian innovation projects with UNICEF, UNHCR, Oxfam, USAID, foreign government ministries and community-based organizations across dozens of countries. She also co-founded a social enterprise that has provided access to safe drinking water to thousands in India, Nepal and Bangladesh. Formerly trained as an environmental engineer, she earned a Doctorate of Public Health from Harvard and a Master’s in Learning, Design and Technology (LDT) from Stanford. Her projects have won multiple awards, including the top prize in A Grand Challenge for Development: Technology to Support Education in Crisis & Conflict Settings, and led to her being recognized for Learning 30 Under 30. She enjoys being an active volunteer, supporting several non-profits in health, education, environmental sustainability and social justice.
Jenna Sherman, MPH, is a Program Manager for Meedan’s Digital Health Lab, an initiative focused on addressing the urgent challenges around health information equity. She has her MPH from the Harvard T.H. Chan School of Public Health in Social and Behavioral Sciences, with a concentration in Maternal and Child Health. Prior to her graduate studies, Jenna served as a Senior Project Coordinator at the Berkman Klein Center for Internet and Society at Harvard Law School, where she worked on tech ethics with an emphasis on mitigating bias and discrimination in AI and health misinformation online. Previous experiences include helping to develop accessible drug pricing policies, researching access to quality information during epidemics, and studying the impact of maternal incarceration on infant health.
Nour is a Global Health Strategy consultant based in Dakar (Senegal) and specialized in health system strengthening. Most recently, she worked with Dalberg Advisors focusing on Epidemic Preparedness & Response and Vaccination Coverage and Equity across 15 countries in Sub-Saharan Africa. Her previous work experiences include researching the clinical needs in point-of-care technology in cancer care at the Dana-Farber Cancer Institute in Boston; and coordinating the implementation of a colonoscopy quality assurance initiative for a colorectal cancer screening program at McGill University in Montreal. Nour has a Master of Public Health from the Harvard T.H. Chan School of Public Health, a Master of Arts in Medical Ethics and Law from King’s College London, and a Bachelor of Science from McGill University. She is fluent in French and English.
Shalini Joshi is a Program Lead at Meedan and formerly the Executive Editor and co-founder of Khabar Lahariya - India’s only independent, digital news network available to viewers in remote rural areas and small towns. Shalini transformed Khabar Lahariya from one edition of a printed newspaper to an award-winning digital news agency available to over ten million viewers. She has a sophisticated understanding of local media and gender, and the ways in which they can inhibit women from participating in the public sphere in South Asia. Shalini was a TruthBuzz Partner & Fellow with the International Center for Journalists (ICFJ). She is a trainer in journalism, verification and fact-checking. She has designed, implemented and strengthened news reporting & editorial policies and practices in newsrooms and fact-checking organisations. Shalini set up and managed the tipline used to collect WhatsApp-based rumors for Checkpoint, a research project to study misinformation at scale during the 2019 Indian general elections.
Mohit Nair currently serves as Partnerships Director at FairVote Washington, a non-profit organisation based in Seattle, WA. Previously, he worked with the Medecins Sans Frontieres (MSF) Vienna Evaluation Unit and with MSF Operational Centre Barcelona in India. He has conducted research studies on diverse topics, including the drivers of antibiotic resistance in West Bengal and perceptions of palliative care in Bihar. Mohit has also worked as a research consultant with Save the Children in Laos to identify gaps in the primary health system and develop a district-wide action plan for children with disabilities. He holds a Master of Public Health from the Harvard University T.H. Chan School of Public Health and a Bachelor of Science from Cornell University.
Seema Yasmin is an Emmy Award-winning medical journalist, poet, physican and author. Yasmin served as an officer in the Epidemic Intelligence Service at the U.S. Centers for Disease Control and Prevention where she investigated disease outbreaks. She trained in journalism at the University of Toronto and in medicine at the University of Cambridge. Yasmin was a finalist for the Pulitzer Prize in breaking news in 2017 with a team from The Dallas Morning News and received an Emmy Award for her reporting on neglected diseases. She received two grants from the Pulitzer Center on Crisis Reporting and was selected as a John S. Knight Fellow in Journalism at Stanford University iin 2017 where she investigated the spread of health misinformation and disinformation during epidemics.
Dr. Saskia Popescu is an infectious disease epidemiologist and infection preventionist with a focus on hospital biopreparedness and the role of infection prevention in health security efforts. She is an expert in healthcare biopreparedness and is nationally recognized for her work in infection prevention and enhancing hospital response to infectious diseases events. Currently, Dr. Popescu is an Adjunct Professor with the University of Arizona, and an Affiliate Faculty with George Mason University, while serving on the Coronavirus Task Force within the Federation of American Scientists, and on a data collection subcommittee for SARS-CoV-2 response with the National Academies of Science, Engineering, and Medicine. She holds a PhD in Biodefense from George Mason University, a Masters in Public Health with a focus on infectious diseases, and a Masters of Arts in International Security Studies, from the University of Arizona. Dr. Popescu is an Alumni Fellow of the Emerging Leaders in Biosecurity Initiative (ELBI) at the Johns Hopkins Bloomberg School of Public Health, Center for Health Security. She is also an external expert for the European Centre for Disease Control (ECDC), and a recipient of the Presidential Scholarship at George Mason University. In 2010, she was a recipient of the Frontier Interdisciplinary eXperience (FIX) HS-STEM Career Development Grant in Food Defense through the National Center for Food Protection and Defense. During her work as an infection preventionist, she managed Ebola response, a 300+ measles exposure resulting in an MMWR article, and bioterrorism preparedness in the hospital system. More recently, she created and disseminated a gap analysis for a 6-hospital system to establish vulnerabilities for high-consequence diseases, helping to guide the creation of a high-consequence disease initiative to enhance readiness at the healthcare level.
Ben Kertman is a behavior change scientist and public health specialist who became a user research consultant to help organizations design experiences that change behaviors and improve human well-being. Impatient with the tendency of behavior change companies to use a single discipline approach (e.g. behavioral economics) and guard their methods behind paywalls, Ben spent the last 7 years developing an open-source, multi-discipline, behavior change framework for researchers and designers to apply to UX. Ben is an in-house SME at Fidelity Investments and consults for non-profits on the side. Ben holds a masters in Social and Behavior Science and Public Health from Harvard.
Emily LaRose is a Registered Dietitian and Nutrition and Global Health Consultant who, in addition to her work with Meedan, currently works as a Technical Advisor for Nutrition for Operation Smile. She has been a dietitian for more than 18 years and, over the past 10 years, she has worked for the World Bank, Global Alliance for Improved Nutrition (GAIN), Médecins Sans Frontières (MSF), PATH, Johnson & Wales University, and Children’s Hospital Los Angeles. In her work, she has conducted analytical research and written specialty reports on infant and young child malnutrition, health misinformation, global human milk banking practices, and innovative food system programs; developed tools and protocols for clinical nutrition care delivery in humanitarian hospitals; taught university-level nutrition courses; and provided nutritional care for critically ill hospitalized patients. Emily earned her Doctor of Public Health (DrPH) degree with a Nutrition and Global Health Concentration at the Harvard T.H. Chan School of Public Health, her Master of Science in Dietetics at Kansas State University, and her Bachelor of Science in Culinary Arts Nutrition at Johnson & Wales University.
Bhargav Krishna is a Fellow at the Centre for Policy Research in Delhi, and adjunct faculty at the Public Health Foundation of India and Azim Premji University. He previously managed the Centre for Environmental Health at the Public Health Foundation of India, leading research and teaching on environmental health at the Foundation. He has been a member of Government of India expert committees on air pollution and biomedical waste, and has led work with Union and State governments on air pollution, climate change, and health systems. His work has been funded by the World Health Organization, Rockefeller Foundation, Packard Foundation, Environmental Defense Fund, and others. He holds bachelors and masters degrees in Biotechnology and Environmental Science respectively, and graduated recently from the Doctor of Public Health program at the Harvard T. H. Chan School of Public Health. Bhargav also co-founded Care for Air, a non-profit working on raising awareness related to air pollution with school children in Delhi.
Dr. Christine Mutaganzwa is a medical doctor pursuing a Ph.D. program at the Université de Montréal in Biomedical Sciences. She holds a Master of Medical Sciences in Global Health Delivery (MMSc-GHD) from Harvard Medical School, Boston, MA, and a Master of Sciences (MSc) in Epidemiology and Biostatistics from the University of Witwatersrand, Johannesburg, South Africa. She graduated from the University of Rwanda with a degree in General Medicine and Surgery. Christine has worked with referral hospitals in Kigali, the capital city of Rwanda, during her medical training and after graduation. In addition, she has extensive experience working with rural communities in the Eastern province of Rwanda, where she organized clinical and research activities in active collaboration with colleagues within and outside Rwanda. Her research portfolio cuts across maternal and child health to infectious and chronic diseases. Christine is an advocate for children's healthcare services, especially for underserved populations. She is part of a community of scientists translating scientific findings into understandable and accessible information for the general population. Christine is an avid reader and a lover of classical/contemporary music.
Ahmad is an experienced physician, who earned his medical degree from Cairo University, Faculty of Medicine, in Egypt. He practiced medicine between 2012 and 2017 as a general practitioner where he was involved in primary care, health quarantine services, and radiology. He then taught medicine in Cairo for two years prior to starting his MPH program, at the Harvard T.H. Chan School of Public Health, where he supplemented his experience with knowledge on epidemiology, health systems and global health issues. Additionally, Ahmad has an interest in nutrition, which started as a personal curiosity to how he can improve his own health, then quickly saw the potential for public health nutrition in the prevention and management of multiple, lifelong diseases. His enrollment at Harvard started his transition towards learning about food, and public health nutrition. Ahmad now combines the knowledge and experience of his medical career, with the learnings of his degree to navigate public health topics in his writing and his career. He is a life-long learner and continues to gather knowledge and experience, and works towards maximizing his impact through combatting misinformation through his work with Meedan.
Dr. Uzma Alam is a global health professional working at the intersection of infectious diseases and healthcare delivery in the international development and humanitarian contexts. She focuses on the use of evidence and innovation to inform strategies and policies. Her work has appeared globally across print and media outlets.She has international experience with roles of increasing responsibility across the science value chain having served with academic, non-profit, corporate, and governmental agencies, including advisory commissions and corporate counsel. Uzma is the former secretary of the Association of Women in Science and editor of the Yale Journal of Health Policy, Law, and Ethics. Currently she serves on the Board of the Geneva Foundation. She also leads the Biomedical and Health Sciences Portfolio of the Developing Excellence, Leadership and Training in Science in Africa program (DELTAS-Africa). A US$100 million programme supporting development of world-class scientific leaders on the continent. Plus heading the African Science, Technology, and Innovation (STI) Priorities Programme. A programme that engages Africa’s science and political leaders to identify the top STI priorities for the continent that if addressed, offer the highest return on investment for Africa’s sustainable development.