This explainer is more than 90 days old. Some of the information might be out of date or no longer relevant. Browse our homepage for up to date content or request information about a specific topic from our team of scientists.
This article has been translated from its original language. Please reach out if you have any feedback on the translation.
Dozens of countries have now rolled out mass vaccination campaigns using a variety of vaccines. Knowing this, it makes sense to question why more than one or two or these vaccine formulas are necessary. The answer to this is as multi-faceted as populations are diverse, but in short, we will need multiple vaccines to stop the pandemic. No one pharmaceutical or biotechnology company would be able to produce enough product and distribute it to the entire global population fast enough to curb the pandemic. Producing more than one vaccine also means that manufacturing delays become less risky. With the world relying on multiple companies to produce the live-saving products, delivery delays of one vaccine can be offset by the production of other vaccines. For countries with electricity challenges, last mile health outposts, and a lack of roads, it is not always feasible to deliver Pfizer and Moderna's mRNA vaccines, because of the refrigerated temperatures they require for transport. Many countries will likely rely on another vaccine formulation that has a longer shelf life and has no refrigeration requirements. Cost is another reason for multiple vaccines. High resource-countries have pre-purchased millions of different vaccines directly from distributors in order to immunize their populations, which is not possible for some countries. Vaccine prices range from a couple of US dollars per dose to roughly $50, depending on the producer. Many countries do not have the financial resources to spend billions of dollars in addition to their annual health budgets to procure vaccines for their populations. As such, dozens of countries are reliant on programs like COVAX to help them obtain free or low-cost vaccines for their citizens. Lastly, vaccines need to protect diverse groups of people. Every person will respond differently to each vaccine and have a different immune response. So having a variety of vaccine types fill these needs is a more concrete strategy than relying on or or two vaccines alone. We still have many unanswered questions about how long immunity might last, who might have a more robust immune system response than others, or even how effective they might be in children.
Dozens of countries have now rolled out mass vaccination campaigns using a variety of vaccines. Knowing this, it makes sense to question why more than one or two or these vaccine formulas are necessary. The answer to this is as multi-faceted as populations are diverse, but in short, we will need multiple vaccines to stop the pandemic. No one pharmaceutical or biotechnology company would be able to produce enough product and distribute it to the entire global population fast enough to curb the pandemic. Producing more than one vaccine also means that manufacturing delays become less risky. With the world relying on multiple companies to produce the live-saving products, delivery delays of one vaccine can be offset by the production of other vaccines. For countries with electricity challenges, last mile health outposts, and a lack of roads, it is not always feasible to deliver Pfizer and Moderna's mRNA vaccines, because of the refrigerated temperatures they require for transport. Many countries will likely rely on another vaccine formulation that has a longer shelf life and has no refrigeration requirements. Cost is another reason for multiple vaccines. High resource-countries have pre-purchased millions of different vaccines directly from distributors in order to immunize their populations, which is not possible for some countries. Vaccine prices range from a couple of US dollars per dose to roughly $50, depending on the producer. Many countries do not have the financial resources to spend billions of dollars in addition to their annual health budgets to procure vaccines for their populations. As such, dozens of countries are reliant on programs like COVAX to help them obtain free or low-cost vaccines for their citizens. Lastly, vaccines need to protect diverse groups of people. Every person will respond differently to each vaccine and have a different immune response. So having a variety of vaccine types fill these needs is a more concrete strategy than relying on or or two vaccines alone. We still have many unanswered questions about how long immunity might last, who might have a more robust immune system response than others, or even how effective they might be in children.
Dozens of countries have now rolled out mass vaccination campaigns using a variety of vaccines. Knowing this, it makes sense to question why more than one or two or these vaccine formulas are necessary. The answer to this is as multi-faceted as populations are diverse, but in short, we will need multiple vaccines to stop the pandemic.
No one pharmaceutical or biotechnology company would be able to produce enough product and distribute it to the entire global population fast enough to curb the pandemic.
Producing more than one vaccine also means that manufacturing delays become less risky. With the world relying on multiple companies to produce the live-saving products, delivery delays of one vaccine can be offset by the production of other vaccines.
For countries with electricity challenges, last mile health outposts, and a lack of roads, it is not always feasible to deliver Pfizer and Moderna's mRNA vaccines, because of the refrigerated temperatures they require for transport. Many countries will likely rely on another vaccine formulation that has a longer shelf life and has no refrigeration requirements.
Cost is another reason for multiple vaccines. High resource-countries have pre-purchased millions of different vaccines directly from distributors in order to immunize their populations, which is not possible for some countries. Vaccine prices range from a couple of US dollars per dose to roughly $50, depending on the producer. Many countries do not have the financial resources to spend billions of dollars in addition to their annual health budgets to procure vaccines for their populations. As such, dozens of countries are reliant on programs like COVAX to help them obtain free or low-cost vaccines for their citizens.
Lastly, vaccines need to protect diverse groups of people. Every person will respond differently to each vaccine and have a different immune response. So having a variety of vaccine types fill these needs is a more concrete strategy than relying on or or two vaccines alone. We still have many unanswered questions about how long immunity might last, who might have a more robust immune system response than others, or even how effective they might be in children.
Dozens of countries have now rolled out mass vaccination campaigns using a variety of vaccines. Knowing this, it makes sense to question why more than one or two or these vaccine formulas are necessary. The answer to this is as multi-faceted as populations are diverse, but in short, we will need multiple vaccines to stop the pandemic.
No one pharmaceutical or biotechnology company would be able to produce enough product and distribute it to the entire global population fast enough to curb the pandemic.
Producing more than one vaccine also means that manufacturing delays become less risky. With the world relying on multiple companies to produce the live-saving products, delivery delays of one vaccine can be offset by the production of other vaccines.
For countries with electricity challenges, last mile health outposts, and a lack of roads, it is not always feasible to deliver Pfizer and Moderna's mRNA vaccines, because of the refrigerated temperatures they require for transport. Many countries will likely rely on another vaccine formulation that has a longer shelf life and has no refrigeration requirements.
Cost is another reason for multiple vaccines. High resource-countries have pre-purchased millions of different vaccines directly from distributors in order to immunize their populations, which is not possible for some countries. Vaccine prices range from a couple of US dollars per dose to roughly $50, depending on the producer. Many countries do not have the financial resources to spend billions of dollars in addition to their annual health budgets to procure vaccines for their populations. As such, dozens of countries are reliant on programs like COVAX to help them obtain free or low-cost vaccines for their citizens.
Lastly, vaccines need to protect diverse groups of people. Every person will respond differently to each vaccine and have a different immune response. So having a variety of vaccine types fill these needs is a more concrete strategy than relying on or or two vaccines alone. We still have many unanswered questions about how long immunity might last, who might have a more robust immune system response than others, or even how effective they might be in children.
As more vaccines complete their clinical trials, we will learn how much protection they may give each recipient per shot and at what cost. Since the majority of potential COVID-19 vaccines are still under development, we will likely have more vaccine options in a few months that target specific populations or provide more vaccines to countries at a lower cost, with fast production turnover.
As more vaccines complete their clinical trials, we will learn how much protection they may give each recipient per shot and at what cost. Since the majority of potential COVID-19 vaccines are still under development, we will likely have more vaccine options in a few months that target specific populations or provide more vaccines to countries at a lower cost, with fast production turnover.